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This paper deals with the two-state(opening–closing of base pairs) model used to describe the fluctuation
dynamics of a single bubble formation. We present an exact solution for the discrete and finite size version of
the model that includes end effects and derive analytic expressions of the correlation function, survival prob-
ability, and lifetimes for the bubble relaxation dynamics. It is shown that the continuous and semi-infinite limit
of the model becomes a good approximation to an exact result whenaN!1, whereN is bubble size anda, the
ratio of opening to closing rates of base pairs, is the control parameter of DNA melting.
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Upon heating, a double stranded DNA(ds DNA) under-
goes a denaturation process with the formation of bubbles of
increasing size and number and, eventually, leading to the
separation of the two strands[1]. On the other hand, many
DNA biological activities require the unzipping of the two
strands by breaking hydrogen bonds between base pairs(see
e.g., Ref.[2] for an idea of the background to the problem).
Such open regions of complex DNA, enclosing up to 10–30
broken base pairs, represent a first step of the transcription
processes and are called the transcription bubbles. Several
theoretical models have been proposed to describe the phe-
nomenon of bubble formation(for a review see, e.g.,[3]).
However, the issue remains unsettled with various, and even
contradictory, results reported in the literature. This is indica-
tive of the complexity of the problem which involves number
of factors(e.g., base pair sequences, molecular environment,
counterions, etc.) that can influence the denaturation process
in various ways(see, e.g.,[4–6]). In addition, as a one- or
quasi-one-dimensional system, the ds DNA is expected to be
very sensitive to thermal fluctuations. Therefore, it seems
appropriate in a first step to study the fluctuations of local
breathing or unzipping of a ds DNA that opens up bubbles of
a few tens of base pairs.

The characteristic dynamics of these local denaturation
zones (bubbles) in the structure of a ds DNA have been
recently probed through fluorescence correlation spect-
roscopy[7,8]. This is an essential issue not only for physi-
ological processes involving ds DNA but also for providing
insights on the general nature of fluctuations in such
systems. From a theoretical modeling perspective, however,
we have just begun to understand these experimental
results. In their recent paper[8], Altan-Bonnet, Libchaber,
and Krichevsky(ALK ) have presented a measurement of the
dynamics of a single bubble formation in ds DNA construct.
The authors proposed a simple discrete and finite
size model for the description of the dynamics of bubbles
while they used a continuous and semi-
infinite version of the model to fit their
experimental data. In this continuous and semi-infinite
limit, the survival probability of the bubble reads[8]:
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x
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wherex= t /t`,c and the bubble lifetime is

t`,c =
s1 + ad

2k−s1 − ad2 ; a =
k+

k−
= e−«/kBT, s2d

wherek+ and k− are the opening and closing rates of base
pair, respectively,« the bubble extension energy andkBT the
thermal energy. In the same spirit, the dynamics of bubble
formation have been studied in terms of Fokker-Planck equa-
tion [9]. In this paper, we go one step forward in providing
the exact solution of the generalized ALK model, taking into
account both the discreteness of the system and the finite size
and including end effects. Figure 1 displays an illustration of
the reaction we are dealing with. Our motivation in this in-
vestigation is to provide analytic expressions for bubble re-
laxation function, relaxation time, and lifetime. Such exact
solutions may significantly improve data analyzes and be
very relevant for any systems with arbitrary« and sizeN.

FIG. 1. Sketch illustrating the opening–closing bubble reaction
kinetics.
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Following ALK, we denote bybnstd the probability den-
sity of bubbles of sizen at time t in the system. Assuming
that all conformations of the ds DNA can be described as two
states(closed or open), the fluctuations dynamics in the num-
ber n of open base pairs in the bubble is described by the
master equation:

5
db0

dt
= k−b1 − k1b0

db1
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= k1b0 + k−b2 − sk+ + k−db1

¯ ¯

dbn

dt
= k+bn−1 + k−bn+1 − sk+ + k−dbn

¯ ¯

dbN

dt
= k+bN−1 + k2bN+1 − sk+ + k−dbN

dbN+1

dt
= k+bN − k2bN+1,

s3d

where, in addition to the ratesk± in ALK model [8], we have
explicitly introduced the opening and the closing ratesk1 and
k2, respectively, for opening the first and closing the last
pairs since two ends of the DNA helix are sealed(see Fig. 1).

Stationary distribution: Whenk1Þ0 andk2Þ0, Eq.(3)
admits a stationary solution given by

bstsnd
bsts0d

= Hk1a
n−1/k− ; 1 ø n ø N

k1a
N/k2 ; n = N + 1

, s4d

where bsts0d=1/f1+sk1Q/k−d+sk1a
N/k2dg with Q=s1

−aNd / s1−ad. The equilibrium fraction of DNA molecules
that are closed, open, and with bubbles in the system are
given bybsts0d, bstsNd, and fb, respectively, where

fb = o
n=1

N

bstsnd = Sk1Q

k−
Dbsts0d. s5d

The equilibrium constantsK1 andK2 for the concentrations
of species in the reactions in Fig. 1 are:

K1 =
sbubbled
sclosedd

=
k1

kb
and K2 =

sopend
sbubbled

=
kf

k2
. s6d

where the backwardkb and forwardkf rates are,

kb =
kf

aN = k−S 1 − a

1 − aND . s7d

Whenk1=k2=0, the concentration of bubbles tends zero and
we havefopeng / fclosedg=aN.

Relaxation function: To study the fluctuations of
bubbles, we considerPsz,tun0d=on=0

N+1znbnstun0d (where
bnstun0d is conditional the probability density of finding a
DNA molecule with a bubble of sizen at time t given that
the size wasn0 at time t=0) the characteristic function
for the system prepared with the initial condition,

bnst=0un0d=dn,n0
. The Laplace transform fP̂sz,sun0d

=e0
`dtPsz,tun0de−stg of Psz,t un0d is obtained as,
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where Dsz,sd=k+fz−z1ssdgfz−z2ssdg and z1,2ssd=fs/k−+1

+a7Îss/k−+1+ad2−4ag /2a. The functions b̂0ssun0d and

b̂N+1ssun0d, obtained by requiring that the numerator of

P̂sz,sun0d cancels at the roots ofDsz,sd, are given by
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with
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To fit with the experimental conditions by ALK, we as-
sume that the system is prepared in the initial conditions
bstsn0d / fb for 1øn0øN and zero otherwise. The quantity of
interest is the correlation functionCNstd that describes fluc-
tuations in the bubble population at equilibrium and is mea-
sured by fluorescence correlation spectroscopy method[8]:

CNstd = o
n0=1

N

o
n=1

N fbnstun0d − bns`un0bstsn0d
fbs1 − fbd

= 1 − o
n0=1

N fb0stun0d + bN+1stun0bstsn0d
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, s12d

in which bns0un0d=dn,n0
, and we have used the conservation

of the probability density,on=0
N+1bnstun0d=1. Note thatCNs0d

=1 since bns`un0d=bstsnd and CNs`d=0. Performing the
summation in Eq.(12), we find the Laplace transform of
CNstd as

ĈNssd =
1

s
− F k−

s1 − fbdQG 3
fs1 − z1dFsz2d − s1 − z2dFsz1dg

s
,

s13d

where Fszd=s1−zNdfss1−zN+1d+s1−zdsk1+k2z
Ndg / fzNDg.

From this, the bubble relaxation time is obtained astN

=Ĉss=0d. Two limiting cases are considered depending onk1

andk2.
(1) sk1+k2d.0 limit: In this case, the bubble relaxation

time is given by
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tN = H s1 + aN+1d
s1 − ad2 F k1 + k2

aNk1k− + k2k− + Qk1k2
G

−
2NaN
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D
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aNk1 + k2
GJHsk1 + k2d, s14d

whereH is Heaviside step function defined asHszd=0 for
z,0 and Hszd=1 for z.0. When eitherk1 or k2 tends to
zero,tN linearly decreases, respectively, with eitherk1 or k2
towardstNs0d defined as

k−tNs0d = F s1 + aN+1ds1 − aNd − 2NaNs1 − ad
s1 − ad2s1 − aNd G

3 H 1 ; k1 = 0,k2 . 0

a−N ; k1 . 0,k2 = 0.
s15d

Note, thattNs0d is independent ofk1 and k2 because the
kinetics in these limits is dominated by the bubbles decay.
As N→`, the fluctuations of bubbles become independent
of N with the relaxation function;

Ĉssd =
1

s
−

k−s1 − ads1 − z1d
s1 − fbdsfs+ k1s1 − z1dg

, s16d

and lifetime,

t` =
1

s1 − adfs1 − adk− + k1g
. s17d

(2) k1=k2=0 limit: In this case, ĈNssd=B̂Nssd, where
BNstd is the survival probability of bubbles. Likewise, the

bubble lifetimetN=B̂Nss=0d is given by

tN =
s1 − aNds1 − aN+2d − NsN + 2ds1 − ad2aN

k−s1 − ad2s1 − aNds1 − aN+1d
. s18d

When N→`, Eq. s13d reduces toB̂`ssd=s1/sd−k−s1−adf1
−z1g /s2, and,

B`std = 1 −
x

1 − a
+

s1 − ad
2a

E
0

y

dzSy

z
− 1DexpF

−
s1 + ad
2Îa

zGI1szd, s19d

where I1s¯d is the modified Bessel function of order
one, y=2xÎa/ s1−ad2 and x= t /t`. It is worth noting that
even in theN→` limit the exact solution Eq.s19d for the
bubble survival probability is different from Eq.s1d given
in f8g. The fact is that, depending on the sizeN and the
parameter “a,” the discreteness of the system is an ingre-
dient which might be taken into account to capture the
correct bubble dynamics. This is illustrated in Fig. 2
where the exact survival probability is compared with its
N→` limit and the ALK continuous model. Figure 3

shows the departure in the bubble lifetime to the continu-
ous limit as a function of bubble size. It clearly appears
from Figs. 2 and 3 that the continuous limit as done by
ALK f8g becomes a fairly good approximation to exact
result for aN!1 swhereaø1 is the control parameter for
the ds DNA meltingf8,10gd.

Simple inspection of expressions in Eqs.(13), (14), and
(18), and of the figures, indicate that the behavior of bubble
dynamics is controlled by the bubble sizeN and the param-
etera (ratio of opening to closing rates of base pairs). As a
ø1 according to the experimental situation in[8], the clos-
ing of bubbles is the fastest process in the bubbles kinetics.
The parametera also controls the denaturation transition. As
a→1, there is a kind of “critical slowing down” where the
fluctuations of bubbles are described by an unbiased diffu-
sion process. For instance, the bubble lifetime in Eq.(18)
reduces to

FIG. 2. Bubble survival probabilities, from the top to the bot-
tom, BNstd (solid line), B`std (long-dashed line), andB`,cstd (dotted
line) vs the rescaled lag timest /tN, t /t`, andt /t`,c, respectively.

FIG. 3. Reduced lifetime,tN/t` in Eq. (14) for k1=0 (dashed
line) and Eq. (18) (solid line), as a function of bubble size,N.
Quoted numbers represent the bubble extension energy« /kBT.
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tN =
sN + 1dsN + 2d

12k−
, s20d

in the a→1 limit, and tN diverges with the bubble size.
It may be useful for practical purposes to have an idea of

numerical values of physical parameters entering in the prob-
lem. In the absence of direct measurement ofk−, for instance,
one can use the experimental data in[8] in conjunction with
theoretical results to estimate the closing ratek−. The results
of such an estimation are presented in Table I.

To summarize, we have presented an exact solution of the
discrete and finite size model in Eq.(3) for the description of
the fluctuations dynamics of bubble formation. The twofold
merit of this two-state(open and closed) model is to already
include sufficient complexity of the bubble dynamics over

biomolecular relevant scales and to allow exact analytical
solution. The main results of this paper are the expressions in
Eqs.(13), (14), and(18) for the bubble correlation function,
relaxation time, and bubble lifetime, respectively. These re-
sults, consistent with available data, may prove to be useful
for analysis and interpretation of experimental data on
bubble fluctuations and they are amenable for further experi-
mental tests. It is worthwhile to mention in addition that
different expressions for the relaxation function and time can
be generated within the theoretical framework developed
above by simply using different initial conditions in Eq.(12)
for the preparation of the system.

Given the closing and opening rates of base pair, the
model discussed above allows study phenomena related to
the denaturation mechanisms of DNA such as heating,
changing buffer surrounding, or applying external torques or
forces[11–14]. Likewise, the model can easily be modified
to include more than two states in order to describe, for
instance, the intermediates states between bond and broken
states. Finally, although the calculations may become more
involved and intricate, the theory outlined above can be ex-
tended in several directions including in Eq.(3), for ex-
ample, the effects of base pair sequence in the opening and
closing rates(two and three hydrogen bonds being involved
in A–T and G–C base pairs, respectively), initiation of sev-
eral bubbles, bubbles fission and fusion processes, etc.
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TABLE I. Estimate ofk− using the expressions of the bubble
lifetime in the case ofk1=k2=0. In Ref. [8], the experimental
bubble lifetime is equal to 95ms at T=303 K for N=18 and DNA
samplesM18 andA18.

« /kBT 0.1 0.5 1

Lifetime smsd k−s106 s−1d
tN 95 0.300 0.0675 0.0263

t` 95 1.162 0.0680 0.0263

t`,c 95 1.110 0.0550 0.0180
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